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ABSTRACT

Based on the fast parallel matrix multiplication scheme
of Krishnamurthy and Klette, O(log m) step algorithms using
m matrix processors are described for the exact determination
of the Moore-Penrose generalized inverse and the rank of an
(mxm) matrix with integer entries.
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1. Introduction

In a recent paper, Krishnamurthy and Klette [l] have shown
that the exact product of two (mxm) matrices having integer
elements with e-bit precision can be obtained in the MIMD
mode with complexity u=0(log r log e + (log em)(m?x log ei))
using prime moduli arithmetic with r primes, each of precision
e, bits. (All logarithms are taken to base 2.)

Based on this parallel scheme for multiplication, we describe

here a parallel method with m such matrix processors to deter-
mine exactly, in O(log m) steps, the rank and the generalized
inverse of a rectangular (mxn) matrix with integral entries.
This can be extended to matrices with complex number entries.
However, this procedure is in general invalid for the determina-
tion of the rank of a matrix over a finite field.

Since the rank of a matrix is very sensitive to errors in
computation (especially with matrices which are ill-conditioned),
throughout this paper our discussion will be confined to exact
computational procedures using residue arithmetric. For the
principles and practice of these procedures readers are rnferred
to the papers by Krishnamurthy, Rao and Subramanian [2] and

Krishnamurthy [3]. - w7




2. Principle

The computation of the g-inverse and rank of a rectangular

matrix is based on the following theorem [2,4]:

Theorem. Let A be any mxn matrix with real entries. Let
B(A) = (Am+allm_l+...+am) be the characteristic polynomial of ]
B=AAt(At is the transpose of A). If k#0 is the largest inte-

ger such that akfo then the Moore-Penrose inverse of A is +

+ -1 _t t)k-l

AT = -a, " AT[(AA ¥ .eo +a 1] (1)

If k=0 is the largest integer such that ak#o, then A+=0.

Also, the rank of A is k. |

Based on this theorem an algorithm is described in {2] for
computing tiie exact generalized inverse of A and its rank. 1In
this paper we describe a parallel version of this algoritnm
using the processor model described in [1].

Computation of the rank and g-inverse proceeds tarough
the following steps:

1. Computing B=AAt

2. Finding the characteristic equation of B and computing

at using (1). This can be done by computing tue coeffi-
cients ay of B()) using Leverrier's method [5], as
shown below:

Let Al,xz,...km be the characteristic roots of - and let

mox
Sk = I Al 1=k=m
i=1 ?
then S, = trace(Bk) for lsk=m

k




and

1 0 0.. .0 a, Sl
sl 2 0 . - * 0 az Sz
52 Sl 3 . . - 0 . = - . (2)
S3 S2 Sl. . « 0 . .
| Spe1 Spe2- Sy 2y L Spy -

which in matrix form can be expressed as

Mc = S

Equation (2) can be proved by using the well known iiewton's

identities [5].

The calculation of a, from (2) and determination of at pro-

ceeds as follows:

i)

ii)

iii)

iv)

Computation of Sk’ l<k=m:

This requires computation of the powers of B, viz., Bz,
...,Bk,...,Bm, and the computation of the trace of each
8% (1<k=m).

Computation of M 1:

The determination of ay and hence the rank k requires
the computation of the inverse of the non-singular tri-
angular matrix M.

Determination of M 1s

Determiration of A¥ using (1).

™
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3. Complexity

We now proceed to compute the complexity. For this

purpose we choose as the unit of measurement, the matrix multipli-

cation time (u) and matrix addition time (o) each with com-
plexity as defined in [l1]. We also assume that by a processor
we mean a single matrix processor which can multiplv two matrices
in time p or add in time a. The total complexity can thnerefore ‘g

be computed in terms of the basic operations using these and

the definitions in ([1].

The computation of powers Bk requires log m parallel steps
with m/2 matrix processors each performing a matrix multiplica-
tion in time u. The computation of the trace requires log m
steps of adaition time for m numbers in each Bk; this can be
done with m matrix processors in parallel.

For example, if m=16, with 8 processors the number of
required steps is 109216=4, and at each step the calculations

are organized as follows:

. Processors
gt‘;‘e 1 ] 3 4 5 6 7 3
1 B2
2 g B
3 g8 87 % B
. g6 pls 14 13 .12 .11 10 .9

The computation of the inverse of the non-singular triaigular
matrix M is carried out using a formula similar to (l). Since
M is a triangular matrix, its eigenvalues are simply the diagonal

elements 1,2,...,m; therefore, the coefficients of the characteriscic

N

polynomial of M, namely M(}A) = km+§ﬁm-l+b Am-2+...+bm=0 (3)

2
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can be precomputed once and for all and stored. Using (3)

and the Cayley-Hamilton theorem, we can write

M

o SR s Y sl SO WP 4
ABm
This can be computed in 2+log m steps with m matrix processors
each performing matrix multiplication in time u, and log m
steps of addition in time a. We then need to compute M-ls.
Thus the rank can be computed in
2(uta)log m + 3u = O0(log m)

matrix multiplication steps.

The determination of A¥ can be carried out from the stored

k

values of B" and accumulation of these multiplied by the coeffi-

cients as in (1); this is then multiplied by At

and divided by ay -
This requires log m matrix addition steps and 3 matrix multiplica-
tion steps, using m matrix processors.

Thus the computation of A+ takes (2u+3a)log m + 6y time com-

plexity using m matrix processors.




4, Concluding remarks

(i) The above algorithm fails for a matrix over a finite
field, since the rank of AAt is not in general equal
to the rank of A. Also if we want to use a character-
istic eguation method by directly computing the poly-
nomial of A, we cannot, in general, say that the rank
of the matrix is equal to the number of non-zero char-
acteristic roots. Further, even in the special case
where rank AAt equals rank A, eguation (2) is not
solvable over the finite field. For instance, over
GF(2) the diagonal elements of M are alternatively 1
and 0 and hence the coefficients ay (except al) cannot
be determined. Even for this special case, over GF(p),
this procedure can determine at most the rank of a ﬂ
(p-1xp-1l) matrix. Hence this algorithm cannot be used
for matrices over a finite field which occur in graph
theory, coding theory and other areas of computer science.

(ii) The algorithm can be used to compute the inverses of

polynomial matrices [3].
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